
Learning Equilibria in Stochastic Information Flow

Tracking Games with Partial Knowledge

Shruti Misra, Shana Moothedath, Hossein Hosseini, Joey Allen,
Linda Bushnell, Wenke Lee, and Radha Poovendran

Abstract— Dynamic Information Flow Tracking (DIFT) has

been proposed to detect stealthy and persistent cyber attacks

in a computer system that evade existing defense mechanisms

such as firewalls and signature-based antivirus systems. A DIFT-

based defense tracks the propagation of suspicious information

flows across the system and dynamically generates security

analysis to identify possible attacks, at the cost of additional per-

formance and memory overhead for analyzing non-adversarial

information flows. In this paper, we model the interaction

between adversarial information flows and DIFT on a partially

known system as a nonzero-sum stochastic game. Our game

model captures the probability that the adversary evades

detection even when it is analyzed using the security policies

(false-negatives) and the performance overhead incurred by the

defender for analyzing the non-adversarial flows in the system.

We prove the existence of a Nash equilibrium (NE) and propose

a supervised learning-based approach to find an approximate

NE. Our approach is based on a partially input convex neural

network that learns a mapping between the strategies and

payoffs of the players with the available system knowledge, and

an alternating optimization technique that updates the players’

strategies to obtain an approximate equilibrium. We evaluate

the performance of the proposed approach and empirically

show the convergence to an approximate NE for synthetic

random generated graphs and real-world dataset collected using

Refinable Attack INvestigation (RAIN) framework.

I. INTRODUCTION

Advanced Persistent Threats (APTs) have emerged as a
security threat to organizations, including national defense,
manufacturing, and the financial industry [1]. APTs are
distinct from the traditional cyber attacks in the following
aspects: first, they use customized incursion techniques and
have specific targets with the goal to gather confidential
data and sabotage critical infrastructures. Second, they adopt
prolonged and stealthy attacking strategies to cause more
permanent, significant, and irreversible damages. Third, they
are methodically designed to bypass conventional security
mechanisms. Hence, detection of APTs is typically hard.

Despite the fact that APTs are stealthy, interaction of APTs
with the system during the attack introduce information flows
that include data-flow and control-flow commands. Since
information flows are recorded in the system log, analyzing

S. Misra, S. Moothedath, H. Hosseini, L. Bushnell, and R. Poovendran are
with the Department of Electrical and Computer Engineering, University of
Washington, Seattle, WA 98195 USA. {shrm145, sm15,hosseinh,
lb2, rp3}@uw.edu.

J. Allen and W. Lee are with the College of Computing, Georgia Institute
of Technology, Atlanta, GA 30332 USA. jallen309@gatech.edu,
wenke@cc.gatech.edu.

This work was supported by ONR grant N00014-16-1-2710 P00002 and
DARPA TC grant DARPA FA8650-15-C-7556.

the suspicious information flows is a feasible technique to
detect the presence of adversaries. Dynamic Information
Flow Tracking (DIFT) [2] is a flow tracking-based mech-
anism that is widely used to detect APTs. Implementation
and operation of DIFT, however, introduce memory and
performance overhead on the system as it involves tracking
and analyzing a large number of benign flows [3]. Thus
an optimal selection of processes in the system to perform
security analysis is critical for effective and resource efficient
detection. An optimal selection of processes, however, also
depends on the interaction of the adversary with the system.

In this paper, we model a cost effective DIFT-based detec-
tion mechanism against APTs. The effectiveness of DIFT at
each stage of the attack depends on the actions of the APT.
Further, the probability of APT evading detection depends on
the processes at which DIFT perform security analysis. We
model the strategic interaction between APTs and DIFT as a
a dynamic game that captures the trade-off between detection
efficiency and resource efficiency. The game evolves on the
Information Flow Graph (IFG) of the system constructed
from the system log, where at every stage of the game the
APT chooses the next operation and DIFT decides whether
to conduct a security analysis on the flow or not.

The APT vs. DIFT game is nonzero-sum due to different
parameter values and the additional resource cost on DIFT.
Moreover, the game has an asymmetric information structure
as DIFT is incapable of distinguishing a malicious flow or
benign flow. The position of the information flow in the
IFG along with actions chosen by APT and DIFT yield a
probability distribution on the allowed state transitions in
the game. The transition probabilities are determined by the
rate of false negatives generated by the system at different
processes and in practical scenarios are unknown. Thus both
DIFT and the APT have partial knowledge about the system.
We propose a supervised learning-based approach to learn
an approximate Nash equilibrium (NE) of the game which
implicitly learns the unknown transition probabilities.

We make the following contributions in this paper:
• We formulate a nonzero-sum stochastic game that

captures the interaction between the DIFT defense and
adversarial flows in a system with partial knowledge.
The game captures the information asymmetry among
players and false negatives generated by DIFT.

• We prove that the undiscounted game terminates in
finite number of steps and the game has a NE.

• We propose a supervised learning-based approach that
utilizes a Partially Input Convex Neural Network

(PICNN) architecture. We use two PICNNs to learn
a mapping between the strategies and the payoff
functions of the players, which implicitly learn the
unknown transition probabilities, in a partially known
system. Then we use an alternating optimization ap-
proach to update the players’ strategies to obtain an
approximate NE.

• We implement our approach on data collected using
Refinable Attack INvestigation (RAIN) system and
empirically show the convergence of the algorithm.

This paper is organized is as follows: Section II summa-
rizes the related work. Section III elaborates on information
flow graph, and the attacker and defender models. Section IV
presents the formulation of the nonzero-sum stochastic game.
Section V presents some preliminary results and the proposed
supervised learning-based approach. Section VI illustrates
the results and discussions on the experiments conducted.
Section VII concludes the paper.

II. RELATED WORK

Stochastic games model the interaction in a dynamical
system and are well studied in the context of security games
[4], [5], economic games [6], and resilience of cyber-physical
systems [7]. Stochastic games are formulated in [8], [9]
to model the interaction between malicious attackers and
the Intrusion Detection System (IDS). The network security
configuration problem in distributed IDS is modeled as a
nonzero-sum stochastic game and a value iteration-based
algorithm to find an e-NE is proposed in [10]. In contrast,
this paper focuses on detection of APTs in a system.

A dynamic game model is given in [11] to detect APTs
that can adopt adversarial deceptions. A two-level evasion-
detection game model is given in [12] for detection of APTs.
In our framework, we model the detection of APTs using
DIFT as a dynamic stochastic game. Some effort has been
made to model the detection problem of APTs using DIFT
as a game [13], [14]. The game models in [13], [14] are non-
stochastic as the notion of false negatives is not considered.
Recently, a stochastic model of DIFT-games is proposed in
[15] where the notion of conditional branching in programs
is addressed. An assumption of the approach given in [15]
is that the transition probabilities are assumed to be known.
In this paper, we propose a novel method to collect samples
and learn the unknown transition probabilities. An adaptive
policy approach using a regularized Lagrange function is
proposed in [16] for zero-sum games with unknown transition
probabilities and irreducible state space. In contrast, the game
considered in this paper is nonzero-sum and not irreducible.

Multi-agent reinforcement learning (MARL) algorithms
are proposed in the literature to obtain NE strategies of
nonzero-sum stochastic games when the game information
such as transition and payoff functions of the players are
unknown. However, algorithms with guaranteed convergence
are available only for special cases. A Nash-Q learning
algorithm is given in [17] that converges to a NE of a general-
sum games when the NE is unique. Later [18] defined two
properties, rationality and convergence that are necessary for

an algorithm to converge to a NE and proposed a WOLF-
policy hill climbing algorithm that is empirically shown to
have good performance. An MARL algorithm is proposed
and empirically shown to obtain a correlated equilibrium of a
nonzero-sum game in [19]. Notice that while references [17]-
[19] address nonzero-sum games with discounted reward,
this paper aims to learn NE in average reward. Moreover, in
our game NE is non-unique and hence the existing MARL
approaches do not guarantee convergence.

III. PRELIMINARIES

A. Information Flow Graph

Information flow graphs (IFG) are widely used by analysts
for an effective cyber response [3], [20]. IFGs provide a
graphical representation of the system work-flow, where the
nodes in the graph form the processes, files, network connec-
tions, and memory objects in the system. Edges correspond
to the system calls and are oriented in the direction of
the information flows and/or causality [20]. Let directed
graph G = (VG ,EG) represent IFG of the system, where
VG = {v1, . . . ,vN} and EG ✓ VG ⇥VG . Given a system log,
one can build the corresponding IFG which represents the
lineage of the system operation. We consider directed acyclic
IFGs rendered using the node versioning technique given in
[20]. Our work relies on the IFG of the system to identify
the entry points of the attack and its system-wide impact.

B. Attacker Model

We consider multi-step cyber-attacks called APTs. The
perpetrators of these attacks remain in the system for long
periods, while exploring the organization’s IT infrastructure
and exfiltrating or compromising critical data [20]. Let PA

denote an APT trying to attack a system. APTs are intelligent
adversaries with specific targets, say a sensitive file in the
system. We denote the target of the APT as d, where d 2VG ,
and refer to it as the destination. Further, let l ✓ VG be
the vulnerable locations in the system that susceptible to
be exploited by the adversary. Adversary can enter into
the system through some node in set l and then executes
operations, i.e., transitions in G, so as to reach d before
getting detected by the system.

C. Defender Model

To secure the system against APTs we employ a DIFT
based detection mechanism [2]. DIFT tracks the system calls
to detect the malicious information flows from an adversary
and to restrict the use of these malicious flows. DIFT
consists of three main components: (i) tag sources, (ii) tag
propagation rules, and (iii) tag sinks (traps). Tag sources are
the suspicious locations in the system, such as keyboards,
network interface, and hard disks, that are tagged/tainted as
spurious by DIFT. Tags are single bit or multiple bit markings
depending on the level of granularity manageable with the
available memory and resources. All the processed values of
the tag sources are tagged and DIFT tracks the propagation
of the tagged flows. When anomalous behavior is detected,
tagged flows are inspected by DIFT at specific locations,

referred to as traps. At these traps, DIFT conducts fine grain
analysis to detect the attack and to perform risk assessment.

While tagging and trapping using DIFT is a promising
detection mechanism against APTs, DIFT introduces mem-
ory and performance overhead on the system. Performing
security analysis (trapping) of tagged flows uses considerable
amount of memory of the system [21]. Thus there is a
tradeoff between log granularity and system performance [3].

IV. PROBLEM FORMULATION

We formulate a two-player game between the defender
player, PD, and the adversarial player, PA. The state of
the game at a time step t represents the position of the
tagged information flow that is analyzed by DIFT. Let S =
{s0,s1, . . . ,sN ,f ,t} be the state space of the game, where
s1, . . . ,sN corresponds to the nodes v1, . . . ,vN , respectively,
of the information flow graph G. Without loss of generality,
let vN corresponds to the destination (target) node of the
adversary, i.e., sN = d and we can denote the state space as
S = {s0,s1, . . . ,sN�1,d,f ,t}. We assume that both players
know the destination node, d. In this paper, we use sN and
d interchangeably. Here, f corresponds to the state when
the tagged flow drops out by abandoning the attack and t
corresponds to the state when the adversary is detected. The
state s0 corresponds to a virtual state introduced into the
game in order to denote the starting point of the game. In
the state space S, s0 is connected to all nodes in l . Thus s0
is the state of the game at t = 0.

The action space of the players are discrete and finite.
While PA chooses actions at states in S so as to transition
through G and reach d, PD makes a decision to trap or not to
trap the tagged flow at a state. Let s̄t denote the state of the
game at time instant t. Further, let AA(s̄t) and AD(s̄t) denote
the action sets of PA and PD, respectively, at s̄t . Then, for s̄t /2
{d,f ,t}, AA(s̄t) = {v j : (vi,v j) 2 EG , s̄t = vi}[{?}, where
? is the action of dropping out. At s̄t = s0, AA(s̄t) = l . The
defender’s action set at s̄t /2 {s0,d,f ,t} is given by AD(s̄t) =
{0,1}, where 0 denotes trapping the flow and 1 otherwise. At
s̄t 2 {d,f ,t},AA(s̄t) =AD(s̄t) = /0. The set {d,f ,t} denotes
the terminal states of the game. At every non-terminal state
in the game the adversary chooses a neighboring node in the
IFG to transition to or to drop the attack. On the other hand,
the defender chooses whether to trap the flow or not.

The defender observes the incoming tagged information
flow, however, cannot distinguish if it is a benign flow or a
malicious flow. As a result, even though defender knows the
state of the game, it has only partial information about the
state. On the other hand, the adversary does not know if the
tagged flow will get trapped by the defender while choosing
a transition. Thus the game is an imperfect information game.

Consider a tagged flow incoming at node vi 2VG at time
t. Then s̄t = si. Let the action chosen by the defender and
the adversary at s̄t be dt and at , respectively. If dt = 0,
then s̄t+1 = at . That is, if defender chooses not to trap an
information flow, then the flow proceeds to the node in G
chosen by the adversary. If the defender chooses to trap the
flow, then the flow is terminated with probability P(s̄t) and
the flow transition to the state corresponding to the action

of the adversary with the remaining probability. That is, if
dt = 1, then s̄t+1 = t with probability P(s̄t) and s̄t+1 = at
with probability 1� P(s̄t). The transition probability P(·)
depends on the rate of generation of false negatives at the
different nodes in the IFG. Note that, different nodes in
IFG have different capabilities to perform security analysis
and depending on that the value of P(·) is different. The
numerical values of these transition probabilities depend on
the type of the attack and hence are in a practical setting is
unknown to the analysts. As APTs are tailored attacks that
can manipulate the system operation and evade conventional
security mechanisms such as firewalls, anti-virus softwares,
and intrusion-detection systems, P(·)’s are unknown.

At every time step, both PA and PD strategize for their
own benefit. We denote the policy space of the attacker by
PA and that of the defender by PD. Then, PA : S! [0,1]|AA|

and PD : S! [0,1]|AD|. Let pA 2 PA and pD 2 PD. For pD =
[pD(s1), . . . , pD(sN�1)], the flow is trapped at state s̄t with
probability pD(s̄t) and not trapped with probability 1� pD(s̄t).
For pA = [pA(s0), pA(s1), . . . , pA(sN�1)], pA(s̄t) is a probability
distribution over all possible actions of the adversary at s̄t .

The payoff functions of the players consist of three main
components. The defender earns a reward aD > 0 if it detects
the adversary, incurs a penalty bD < 0 if it fails to detect
the adversary, and earns a reward sD > 0 if the adversary
abandons the attack by dropping out. The adversary incurs
a penalty aA < 0 if it gets detected by the defender, earns
a reward bA > 0 if it reaches the destination, and incurs a
penalty sA 6 0 for abandoning the attack by dropping out.
Additionally, the defender also incurs a resource cost CD(vi)
for conducting security analysis on benign flows at node
vi 2 VG . This cost depends on the computational power and
busyness of the node, as the defender needs to avoid over
loading the busy processes to avoid performance and memory
overhead. Notice that the game is nonzero-sum.

Let the payoff of player k at a terminal state state s̄t be
ck(s̄t) and at a non-terminal state s̄t with action pair (at ,dt)
be rk(s̄t ,at ,dt), where k 2 {A,D}. Then,

ck(s̄t) =

8
><

>:

ak, s̄t = t
bk, s̄t = d
sk, s̄t = f

rk(s̄t ,at ,dt) =

8
><

>:

0, s̄t /2 {d,f ,t}and dt = 0
0, s̄t /2 {d,f ,t},k = A,and dt = 1
CD(s̄t), s̄t /2 {d,f ,t},k = D,and dt = 1.

At each stage in game, s̄t at time t, both players simulta-
neously choose their action at and dt and receive payoffs
rA(s̄t ,at ,dt) and rD(s̄t ,at ,dt), respectively, and transition to a
next state s̄t+1. This is continued until they reach a terminal
state and incur cA(s̄t) and cD(s̄t), respectively.
Now we prove a preliminary result of the game.

Theorem IV.1. The stochastic game between the adversary
and the defender terminates in at most N+3 number of steps.

Proof. Consider any arbitrary strategy pair (pA, pD). We
prove the result using the acyclic property of the state space

of the game under (pA, pD). The state space S is constructed
by augmenting the IFG with states s0,f and t . Note that
a state s 2 {d,f ,t} does not lie in a cycle in S as s is a
terminal state and hence have no outgoing edge. The state s0
does not lie in a cycle in S as there are no incoming edges to
s0. This concludes that a state s2 {s0,d,f ,t} is not part of a
cycle in S. Thus a cycle can possibly exist in S only if there
is a cycle which has states in s1, . . . ,sN�1. Recall that states
s1, . . . ,sN�1 correspond to nodes v1, . . . ,vN�1 of G. As G is
acyclic, there are no cycles in S. Since S is acyclic under any
arbitrary strategy pair (pA, pD) and the state space has finite
cardinality, the game terminates in finite number of steps.
Further, since |S|= N +3, T 6 N +3.

Let T denote termination time of the game. By Theo-
rem IV.1, T 6 N + 3. Thus our game is a finite horizon
game. Let UA and UD denote the payoff functions of PA and
PD, respectively. As the initial state of the game is s0, for a
strategy pair (pA, pD) the expected payoffs of the players are

UA(pA, pD) = Es0,pA,pD

"
T

Â
t=0

(RA
t)

#
and (1)

UD(pA, pD) = Es0,pA,pD

"
T

Â
t=0

(RD
t)

#
, (2)

where Es0,pA,pD denotes the expectation with respect to s0, pA,
and pD and

Rk
t =

(
rk(s̄t ,at ,dt), t < T
ck(s̄t), t = T.

(3)

Hence, the APT vs. DIFT game is a two-player multi-stage
finite horizon stochastic game.

The solution concept of the game is defined as follows.
We first describe the concept of a player’s best response to
a given mixed strategy of the opponent player.

Definition IV.2. Let pD : S! [0,1]|AD| denote a defender
strategy and pA : S! [0,1]|AA| denote an adversary strat-
egy. The set of best responses of the defender is given by
BR(pA) = argmaxpD{UD(pD, pA) : pD 2 [0,1]AD}. Similarly,
the best responses of the adversary given by BR(pD) =
argmaxpA{UA(pD, pA) : pA 2 [0,1]AA}.

Next we define the notion of Nash equilibrium of a game.
A mixed strategy profile (p?D, p?A), where p?D 2PD and p?A 2PA,
is a Nash equilibrium (NE) if the following definition hold.

Definition IV.3. A pair of mixed strategies (p?D, p?A) is a Nash
equilibrium if p?D 2 BR(p?A) and p?A 2 BR(p?D).

Definition IV.3 translates to players selecting policies
(p?D, p?A) 2 PD⇥PA such that

UD(p?D, p?A) > UD(pD, p?A), for all pD 2 PD and, (4)
UA(p?D, p?A) > UA(p?D, pA), for all pA 2 PA. (5)

Now we define the notion of e-Nash equilibrium here.

Definition IV.4. (pe
A, pe

D) 2 PA⇥PD forms an e-equilibrium
in stochastic stationary strategies for any e > 0 and for all

pA 2 pA and pD 2 pD if

UA(pe
A, pe

D) > UA(pA, pe
D)� e, and

UD(pe
A, pe

D) > UD(pe
A, pD)� e.

V. SOLUTION TO THE APT-DIFT GAME

In this section, we first prove the existence of a NE of
the game and few preliminary results. Then we present our
learning-based approach to solve the stochastic game with
unknown transition probabilities.

A. Preliminary Results
Proposition V.1. There exists a NE for the nonzero-sum
undiscounted stochastic game between APT and DIFT.

Proof. It is shown in [22] that there exists a Nash equilibrium
for a nonzero-sum stochastic game with asymmetric informa-
tion structure, under stochastic behavioral policies, when the
time horizon is finite. Theorem IV.1 prove that the APT vs.
DIFT game will terminate in finite number of steps. Further,
the behavioral strategy space is a subset of the strategy space
PA⇥PD. Hence by the result in [22], the proof follows.

Although Proposition V.1 ensures existence of NE for
our finite-horizon stochastic game, computation of a NE is
challenging. Moreover, while the interaction between APTs
and DIFT is modeled as a stochastic game, solving the game
is challenging due to the unknown transition probabilities.
To this end, we propose a learning-based approach to solve
the game. We first introduce the following concepts and
notations to obtain an alternate representation of the payoffs
of the players. Let p(t)t , p(t)R (si), and p(t)f be the probabilities
with which the adversarial flow is detected by the defender,
the adversarial flow reaches state si 2 S, and the adversary
drops out of the game, respectively, for a given strategy pair
(pA, pD) at time t in the game.

Lemma V.2. Consider the nonzero-sum, undiscounted
stochastic between the APT and DIFT. Let p(t)t , p(t)R (si),
and p(t)f be the cumulative probabilities with which the
adversarial flow is detected by the defender, the adversarial
flow reaches state si 2 S, and the adversary drops out of the
game, respectively, for a given strategy pair (pA, pD) at time
step t of the game. Then, pt

t +Âsi2S p(t)R (si)+ p(t)f = 1.

Proof. We prove the result using an induction argument.
The induction hypothesis is that at any time step t, p(t)t +

Âsi2S p(t)R (si)+ p(t)f = 1.
Base step: we consider t = 0 as the base step. For t = 0, the
game state is s0. At t = 0, p(0)t = 0, p(t)R (s0) = 1, p(t)R (si) = 0,
for all si 2 S,si 6= s0, and p(0)f = 0. Thus p(0)t +Âsi2S p(0)R (si)+

p(0)f = 1 and this proves the base step.
Induction step: for the induction step we assume that p(k)t +

Âsi2S p(k)R (si)+ p(k)f = 1.
Now we will prove that p(k+1)

t +Âsi2S p(k+1)
R (si)+ p(k+1)

f =
1. If k = T , then the proof is straightforward. Hence we
assume k < T .

p(k+1)
t + Â

si2S

p(k+1)
R (si)+ p(k+1)

f = p(k)t + Â
si2S

p(k)R (si)
n

Â
a2AA(si)

⇣
pA(si,a)(1� pD(si))+ pA(si,a)pD(si)(1�P(si))

| {z }
transition to s j2S\{t}

+

pA(si,a)pD(si)P(si)
⌘

| {z }
transition to t

o
+ p(k)f

Note that pA(si,a)(1 � pD(si)) + pA(si,a)pD(si)(1 �
P(si)) + pA(si,a)pD(si)P(si)

⌘
= pA(si,a). Further,

Âa2AA(si) pA(si,a) = 1. This gives

p(k+1)
t + Â

si2S

p(k+1)
R (si)+ p(k+1)

f = p(k)t + Â
si2S

p(k)R (si)+ p(k)f

By the induction step, p(k+1)
t +Âsi2S p(k+1)

R (si)+ p(k+1)
f = 1.

At the time of termination, i.e., t = T , the game satisfies
one of the following: (i) s̄T = t , (ii) s̄T = d, and (ii) s̄T =
f . Thus the players’ total payoffs for a given strategy pair
(pA, pD) can be alternatively represented as

UA(pD, pA)= p(T)t aA + p(T)R (d)b A + p(T)f sA, (6)

UD(pD, pA)=Â
vi2VG

⇣
pD(si)CD(vi)

⌘
+p(T)t aD+p(T)R (d)b D+p(T)f sD.(7)

As Eqs. (1), (2) are equivalent to Eqs. (6), (7), respectively,
in our analysis we use Eqs. (6), (7). At termination, by
Lemma V.2 p(T)t + p(T)R + p(T)f = 1. We use Lemma V.2 in the
implementation of our supervised learning-based approach
which is described below.

B. Supervised Learning for Game
In this section, we present our approach to solve the

stochastic APT vs. DIFT game when the transition probabil-
ities are unknown. While game theory provides a framework
to formulate the strategic interaction, solving the game is
challenging due to the unknown transition probabilities, P.
To this end, we propose a supervised learning-based approach
to solve the problem. Our approach consists of two key steps:
(i) training two neural networks, FA and FD, to predict UA,
UD, respectively, for a given (pA, pD); and (ii) optimizing
alternatively to find equilibrium strategies for the players.

Data Generation: In order to train the neural networks, we
generate random samples of strategy pairs (pA, pD). We first
compute the respective p(T)R , p(T)t , p(T)f values using P and
then evaluate UA, UD. Note that, computation of p(T)R , p(T)t ,
and p(T)f for a given (pA, pD) involves all possible paths in
the state space which is exponential in number. Hence we
propose an alternate technique which has complexity linear
in the number of states and edges in S. To elaborate on this,
we introduce the following concepts and notations.

Definition V.3 ([23]). A topological ordering of a directed
graph is a linear ordering of its vertices such that for every
directed edge u,v from vertex u to vertex v, u comes before
v in the ordering.

For a directed graph with vertex set V and edge set E there
exists an algorithm of complexity O(|V |+ |E|) to find the

topological order [23]. Let S be the topologically ordered
set of nodes of S \ {f ,t}. Without loss of generality, we
assume S = {s0,s1, . . . ,sN�1,d} is in topological order.

For a given strategy (pA, pD), let p(T)t (si) be the probability
that a tagged flow at state si gets detected.

p(T)t (si) = pD(si)P(si) (8)

Then, the probability that the adversarial flow reaches state
si is given by,

p(T)R (si) = Â
s j2S

pA(s j,si)p(T)R (s j)(1� p(T)t (s j)). (9)

Lemma V.4. Let S be the state space of the APT vs. DIFT
game. For a given strategy pair (pA, pD), computation of
p(T)R (d), p(T)t , p(T)f has complexity linear in the number of
states and edges in S.

Proof. We begin the computation of p(T)R (si)’s in the order
specified in S . Note that p(T)R (si) depends on s j’s where
s j appear before si in the topologically ordered list S .
Therefore, the values of p(T)R (s j)’s in Eq. (9) are already
computed before p(T)R (si) is evaluated. Given topological
order S , Eqs. (8) and (9) can be computed recursively in |S|
number of operations. The number of operations required to
find the list S is linear in |S| and the number of edges in S

[23]. Thus the proof follows.

Given samples of (pA, pD), we can compute values of UA,
UD using Eqs. (8) and (9) and Lemma V.2.

Training and Alternating Optimization: To compute a NE
of the game with unknown transition probabilities, we first
train two neural networks FA and FD with the generated
data set. Since there is no closed form solution for the joint
optimization of the nonzero-sum game, we update the player
strategies via an alternating optimization approach to obtain
an approximate NE. The key steps of this approach are:

(1) train FA,FD to predict UA,UD, respectively, for an input
(pA, pD) and

(2) alternately update pA (pD, resp.) such that UA (UD, resp.)
is maximized keeping pD (pA, resp.) fixed.

The alternating optimization converges when neither UA

nor UD change any further. However, note that UA and UD

are non-concave functions in pA, pD, respectively. Hence the
resultant policies (pA, pD) is a local Nash equilibrium. To
overcome this we use a Partially Input Convex Neural Net-
work (PICNN) architecture [24] to obtain a convex relaxation
of �UA,�UD, say �ÛA,�ÛD, respectively.

Our neural networks have constraints on the parameters,
such that the output of the network is a convex function
of a subset of the input sets. Motivated by the PICNN
architecture proposed in [24], we present a modified archi-
tecture of partially input convex neural networks. This model
defines a neural network with k layers, over the input y by
implementing the following architecture, for i = 0, . . . ,k�1,

zi+1 = gi

⇣
W (z)

i zi +W (y)
i y+W (u)

i ui +bi

⌘
, f (y;q) = zk,u0 = x.

(10)

Fig. 1: Architecture of a partially input convex neural network with
output U convex in input y but not necessarily convex in input x.

Here, ui,zi denote the hidden units for the “x-path” and “y-
path”, respectively, q = {W (y)

0:k�1,W
(u)
0:k�1,W

(z)
1:k�1,b0:k�1} are

the learnable parameters, and gi represent the non-linear
activation functions. The non-negative constraint on the W (z)

terms can restrict the representation power of the neural
network. In order to overcome this, W (y) terms are added
to the network since they can be negative and thus endow
the network with greater representation power. The convexity
of the network is established below.

Proposition 1. The function f is convex in y provided that
all W (z)

(1:k�1)are non negative, and all functions gi are convex
and non-decreasing.

Proof. The proof follows from the fact that the composition
of a convex and convex non-decreasing function is convex
and that non-negative sums of convex functions are also
convex. For a given input pair (x,y), with fixed x, the term
W (u)

i ui in Eq. (10) is a constant. Note that, W (y)
i y is linear in

y. Hence the output of the neural network is convex in y.

Figure 1 shows the architecture of a PICNN which takes
as input (x,y) and outputs U such that U is convex in y
and not necessarily convex in x. The neural network FA is
a PICNN with x = pD,y = pA and U = �ÛA. Similarly, FD

is a PICNN with x = pA,y = pD and U = �ÛD. Note that,
the PICNN architecture contains “pass-through” layers that
connect the input directly to the hidden layers so that the
neural network has substantial representation power, which
is otherwise restricted by the constraint on the weights [24].

The pseudo-code of the proposed approach is given in
Algorithm V.1. We first generate random samples of strate-
gies (pA, pD) (Step 1) and compute the corresponding UA, UD

(Step 3). Then we train two PICNNs FA and FD to predict
ÛA and ÛD (Step 4), respectively, using the data generated
in Steps 1 and 2. Note that after training FA and FD can
predict �ÛA, �ÛD, respectively, given an input pair (pA, pD)
even when P is unknown.

To solve the game to find an approximate NE, we per-
form an alternating optimization by iteratively updating each
player’s policy in order to maximize its payoff. In every
iteration, we first fix the defender’s strategy and update the
adversary’s strategy using gradient descent, such that the
adversary’s payoff is maximized (Step 8). Then we, fix the
adversary’s strategy to the one obtained in Step 8 and update
the defender’s strategy, such that the defender’s payoff is

Algorithm V.1 Supervised learning-based approach to solve
DIFT-game with unknown transition probabilities

Input: Information flow graph G, false-negatives P for all
vi 2VG , destination d, entry-point l , d > 0, µ 2 (0,1]
Output: Approximate NE (p̄A, p̄D)

D
at

a
ge

ne
ra

tio
n 8>>>>>><

>>>>>>:

Tr
ai

ni
ng

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

1: Generate random samples of (pA, pD)

2: Compute p(T)R (d), p(T)t , p(T)f using P and Eqs. (8)
and (9)

3: Compute �UA,�UD using Eqs. (6) and (7), resp.
4: Train FA,FD using the data set from Steps 2 and 3
5: Initialize randomly p̂(0)A , p̂(0)D , k 0, �Û (0)

A
FA(p̂(0)A , p̂(0)D), �Û (0)

D FD(p̂(0)A , p̂(0)D), g > d
6: while g > d do

7: Fix p̂D and update p̂A to minimize �ÛA as:
p̂(k+1)

A p̂(k)A �µOpAÛ (k)
A

8: Compute �Û (k+1)
A FA(p̂(k+1)

A , p̂(k)D)
9: Fix p̂A and update p̂D to minimize �ÛD as:

p̂(k+1)
D p̂(k)D �µOpDÛ (k)

D

10: Compute �Û (k+1)
D FD(p̂(k+1)

A , p̂(k+1)
D)

11: g max
n
|Û (k+1)

A �Û (k)
A |, |Û (k+1)

D ,Û (k)
D |

o

12: k k+1
13: end while

14: p̄A p̂(k)A , p̄D p̂(k)D

maximized (Step 10). The termination condition is attained
when the individual change in the payoffs of players over
two consecutive iterations is within a prespecified tolerance
d . The strategy pair (p̄A, p̄D) returned by the algorithm is
an approximate NE of the game, where the approximation
factor depends on the convex approximation of the payoff
functions by PICNNs.

VI. NUMERICAL STUDY

To demonstrate the performance of Algorithm V.1, we
conduct two different simulation studies: (i) using a randomly
generated IFG and (ii) using an IFG of ScreenGrab attack
data obtained by the Refinable Attack Investigation System
(RAIN) [3]. For both (i) and (ii) we show the convergence
of Algorithm V.1 and validate that the convergent strategies
are approximate NE through a sensitivity analysis. In all our
experiments, we use the following values for parameters in
Algorithm V.1: aA = -500, aD = 500 bA = 500, bD = -
500, sA = -400 and sD = 400. During training we chose the
learning rates of PICNNs to be hA = 0.05 for FA and hD = 0.2
for FD with a decay of factor 2 after every 10 epochs. The
players’ strategies are randomly initialized for the alternating
optimization and step-size µ = 0.01 and tolerance error level
d = 10�3.

Random Graphs: We generate a random DAG with 50
nodes. An edge exists in the graph with probability (1 +
d) log(n)/n, where d > 0. Note that G for this construction
is an Erdős-Renyi graph with the directed edge probability
(1+ d) log(n)/n [25]. The set of entry-points are randomly
chosen as l = {v24,v38,v32} and node v50 represents the

(a) (b) (c) (d)

Fig. 2: Convergence experiments of Algorithm V.1 using PICNNs FA and FD: (a) adversary’s strategy for random graph, (b) defender’s
strategy for random graph, (c) adversary’s strategy for ScreenGrab attack, and (d) defender’s strategy ScreenGrab attack.

(a) (b)

(c) (d)

Fig. 3: Sensitivity results of the players for Case 1: (a) variation in
the payoff of adversary w.r.t perturbed strategy for random graph,
(b) variation in the payoff of defender w.r.t perturbed strategy for
random graph, (c) variation in the payoff of adversary w.r.t perturbed
strategy for ScreenGrab attack, and (d) variation in the payoff of
adversary w.r.t perturbed strategy for ScreenGrab attack. The red
lines in the plots indicate the payoff obtained from Algorithm V.1.

destination node d. The resource cost is randomly generated
from a uniform distribution [0,10].

ScreeGrab Attack: In a ScreenGrab attack, the adversary
attempts to access the ScreenGrab to capture a screenshot of
the victim’s desktop and send it to the attacker’s server. The
information flow graph is built from system log collected
using the RAIN system [3]. G consists of 12 nodes with
l = v1, and d = v12 denotes the ScreenGrab process which
the adversary wants to gain access to. The resource cost is
randomly generated from a uniform distribution [0,10].

The convergence results of the players’ strategies for
random graph is given in Figure 2 (a), (b) and for the
ScreenGrab attack data is given in Figure 2 (c), (d). We
conduct a sensitivity analysis to validate that the converged

(a) (b)

(c) (d)

Fig. 4: Sensitivity results of the players for Case 2: (a) variation in
the payoff of adversary w.r.t perturbed strategy for random graph,
(b) variation in the payoff of defender w.r.t perturbed strategy for
random graph, (c) variation in the payoff of adversary w.r.t perturbed
strategy for ScreenGrab attack, and (d) variation in the payoff of
adversary w.r.t perturbed strategy for ScreenGrab attack. The red
lines in the plots indicate the payoff obtained from Algorithm V.1.

strategies correspond to a NE of the game. We first initialize
the strategies of both players to the strategy returned by
Algorithm V.1. Then we perturb the adversary’s strategy
while keeping the defender’s strategy fixed. Similarly, we
perturb the defender’s strategy while keeping the adversary
strategy fixed. Here, the rationale is that if the strategies
returned by Algorithm V.1 is a NE (with respect to the
approximated payoff functions), then perturbing the strategy
of a player should not improve its payoff. Therefore, the
payoff from perturbed strategies should be equal to or less
than that of the output of the algorithm. The results provided
below are obtained by generating 100 different perturbations
of each player’s strategy while keeping other player’s strategy
fixed. We consider the following two cases for the sensitivity

analysis.
Case 1: Perturb pA (pD, resp.) and compute the payoff ÛA (

ÛD, resp.) using the PICNN. Since �ÛA and �ÛD are convex
approximated functions by construction, the payoff will not
improve which is validated in Figures 3 (a)-(d).

Case 2: Perturb pA (pD, resp.) and compute the payoff UA

(UD, resp.) using function evaluations of pR, pt and pf as in
Eqs. (8) and (9). Note that as the payoff functions �UA and
�UD are non-convex in the strategies, the perturbation might
result in an improved payoff of the player. The deviation
from being a NE of the original game depends on the close-
ness of the convex approximated payoff functions, ÛA,ÛD,
and the original payoff functions, UA,UD. Therefore, in this
case we observe how well the supervised learning approach
approximates the actual non-convex game formulation.

Figure 4 shows the payoffs corresponding to the perturbed
strategies. As can be seen, for most of the random per-
turbations, the payoff obtained using Eqs. (8) and (9) is
indeed less than the payoff of the strategy returned by the
neural network. Specifically, in random graph experiment
and for pA, only two of the 100 perturbations resulted in
higher payoff and for pD, no perturbation yielded better
payoff. Moreover, in ScreenGrab experiment, no perturbation
resulted in higher payoff for either pA or pD. These results
empirically validate that the proposed approach learns an
approximate equilibrium.

VII. CONCLUSION

In this paper, we model the interaction of DIFT and adver-
sarial information flows in a system with partial knowledge.
We formulate the interaction between APTs and DIFT as
a two-player, multi-stage stochastic game. The game model
incorporates the probability with which the defender fails
to detect an adversary despite trapping (false negatives). We
first proved that the game terminates in finite steps and there
exists a Nash equilibrium. To the best of our knowledge,
there are no known solution approaches for nonzero-sum
dynamic games with partial system information. To this end,
we present a supervised learning-based algorithm to learn
an approximate Nash equilibrium for the game when the
transition probabilities are unknown. Our approach utilizes
a partially input convex neural network architecture and an
alternating optimization to update the players’ strategies.The
performance of our approach is demonstrated by two simula-
tion studies; a random graph and a real-world dataset of the
ScreenGrab attack obtained using the RAIN framework. We
empirically show convergence of our algorithm to an approx-
imate Nash equilibrium by conducting sensitivity analysis of
the results obtained from the algorithm. As future work, we
plan to characterize the approximation factor of the proposed
approach and analyze the trade-off between learning of the
function and obtaining an equilibrium.

REFERENCES

[1] E. Cole, Advanced persistent threat: Understanding the danger and
how to protect your organization. Newnes, 2012.

[2] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM Sigplan
Notices, vol. 39, no. 11, pp. 85–96, 2004.

[3] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso,
and W. Lee, “RAIN: Refinable attack investigation with on-demand
inter-process information flow tracking,” ACM SIGSAC Conference on
Computer and Communications Security, pp. 377–390, 2017.

[4] Q. Zhu, A. Clark, R. Poovendran, and T. Başar, “Deceptive routing
games,” IEEE Conference on Decision and Control, pp. 2704–2711,
2012.

[5] K.-w. Lye and J. M. Wing, “Game strategies in network security,”
International Journal of Information Security, vol. 4, no. 1-2, pp. 71–
86, 2005.

[6] R. Amir, “Stochastic games in economics and related fields: An
overview,” Stochastic Games and Applications, pp. 455–470, 2003.

[7] Q. Zhu and T. Başar, “Robust and resilient control design for cyber-
physical systems with an application to power systems,” IEEE Decision
and Control and European Control Conference, pp. 4066–4071, 2011.

[8] T. Alpcan and T. Başar, “An intrusion detection game with limited
observations,” International Symposium on Dynamic Games and Ap-
plications, vol. 26, 2006.

[9] K. C. Nguyen, T. Alpcan, and T. Başar, “Stochastic games for security
in networks with interdependent nodes,” International Conference on
Game Theory for Networks, pp. 697–703, 2009.

[10] Q. Zhu, H. Tembine, and T. Başar, “Network security configurations:
A nonzero-sum stochastic game approach,” American Control Confer-
ence, pp. 1059–1064, 2010.

[11] L. Huang and Q. Zhu, “Adaptive strategic cyber defense for advanced
persistent threats in critical infrastructure networks,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 46, no. 2, pp. 52–56, 2019.

[12] M. O. Sayin, H. Hosseini, R. Poovendran, and T. Başar, “A game theo-
retical framework for inter-process adversarial intervention detection,”
International Conference on Decision and Game Theory for Security,
pp. 486–507, 2018.

[13] D. Sahabandu, B. Xiao, A. Clark, S. Lee, W. Lee, and R. Poovendran,
“DIFT games: Dynamic information flow tracking games for advanced
persistent threats,” IEEE Conference on Decision and Control, pp.
1136–1143, 2018.

[14] S. Moothedath, D. Sahabandu, A. Clark, S. Lee, W. Lee, and
R. Poovendran, “Multi-stage dynamic information flow tracking
game,” Conference on Decision and Game Theory for Security, Lecture
Notes in Computer Science, vol. 11199, pp. 80–101, 2018.

[15] D. Sahabandu, S. Moothedath, J. Allen, A. Clark, L. Bushnell, W. Lee,
and R. Poovendran, “A game theoretic approach for dynamic infor-
mation flow tracking with conditional branching,” American Control
Conference, 2019.

[16] K. Najim, A. S. Poznyak, and E. Gomez, “Adaptive policy for
two finite markov chains zero-sum stochastic game with unknown
transition matrices and average payoffs,” Automatica, vol. 37, no. 7,
pp. 1007–1018, 2001.

[17] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” Journal of machine learning research, vol. 4, pp. 1039–1069,
2003.

[18] M. Bowling and M. Veloso, “Rational and convergent learning in
stochastic games,” International joint conference on artificial intel-
ligence, vol. 17, no. 1, pp. 1021–1026, 2001.

[19] A. Greenwald, K. Hall, and R. Serrano, “Correlated Q-learning,”
International Conference on Machine Learning, vol. 3, pp. 242–249,
2003.

[20] M. N. Hossain, J. Wang, R. Sekar, and S. D. Stoller, “Dependence-
preserving data compaction for scalable forensic analysis,” USENIX
Security Symposium, pp. 1723–1740, 2018.

[21] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, vol. 32, no. 2, p. 5, 2014.

[22] J. P. Hespanha and M. Prandini, “Nash equilibria in partial-information
games on Markov chains,” IEEE Conference on Decision and Control,
vol. 3, pp. 2102–2107, 2001.

[23] A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

[24] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,”
International Conference on Machine Learning, vol. 70, pp. 146–155,
2017.

[25] P. Erdos and A. Rényi, “On the evolution of random graphs,” Institute
of Mathematics, Hungarian Academy of Sciences, vol. 5, no. 1, pp.
17–60, 1960.

