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Abstract— Dynamic Information Flow Tracking (DIFT) has

been proposed to detect and prevent various cyber attacks in

computer systems. DIFT tracks suspicious information flows in

the system and generates security analysis when anomalous be-

havior is detected. A system threatened by attackers of different

capabilities demands simultaneous analysis of multiple flows. As

the number of information flows in a system is typically large

and the amount of resource required for analyzing different

flows varies, an optimal allocation of the limited resources

available to DIFT is essential. We address the problem of

detecting multiple attackers using resource constrained DIFT

and develop a model that captures the interaction of adversaries

and a DIFT-based defender as a multi-player dynamic game.

Our model consists of a multi-stage game, in which each stage

represents the subset of processes in the system that correspond

to the locations of the information flows, and captures the

notion of benign flows. Given the attackers’ strategies, we

prove that finding an optimal defense strategy is equivalent

to maximizing an increasing DR-submodular function that

enables us to propose an approximation algorithm. Further,

given a defense strategy and strategies of other attackers, we

show that finding an optimal attacker strategy is equivalent

to solving a shortest path problem, where the edge weights

are derived from the strategies of the other players. Based

on this mapping we propose a polynomial-time algorithm for

computing an optimal attacker strategy. Finally, we evaluate

the performance of our algorithm on a real-world dataset

of a nation state attack obtained using the Refinable Attack

INvestigation (RAIN) framework.

I. INTRODUCTION

With the increasing proliferation of information and com-
munication technologies, cyber security is a global issue
affecting companies and organizations of all sizes. A great
deal of effort has been placed into discovering new ways to
determine the origin and nature of cyber attacks, including
signature-based and behavior-based detection methods. As
modern attacks become more stealthy, adaptive, and per-
sistent detecting them using conventional security schemes
is challenging. However, adversarial interactions introduce
information flows consisting of data and control commands
in the system (e.g., an instance of a computer program).
Dynamic Information Flow Tracking (DIFT) is a detection
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mechanism that has been proposed and widely used to detect
attacks by analyzing the information flows in a system [1].

DIFT tags suspicious information flows, tracks their prop-
agation across the system, and performs security analysis if
the system observes any anomalous behavior. As the number
of benign flows in a system is large in comparison to the
adversarial flows, it is essential to minimize the allocation
of the limited memory of DIFT in analyzing tagged benign
flows. Further, when a system is threatened by multiple
simultaneous attacks, in addition to differentiating benign and
adversarial flows, DIFT must also detect adversarial flows
introduced by multiple attackers.

The granularity of security analysis for detection and risk
assessment varies across different types of attackers [1],
[2]. For instance, while a fine-grain level analysis to detect
an Advanced Persistent Threat (APT) incurs high memory,
a coarse-grained analysis with lesser memory suffices to
identify cyber criminals [1]. Any modeling framework should
accommodate these levels of granularities to address the
fundamental trade-off between detection of multiple attack-
ers, which makes the memory allocation problem further
challenging.

In this paper we present an analytical model of a resource
constrained DIFT that analyzes a set of information flows
to simultaneously detect K attackers in a system. The effec-
tiveness of detection depends on the actions of the attackers
and the attackers’ chances of achieving their goals depend
on the allocation of the defense resources. This strategic
interaction motivates a game theoretic modeling as it allows
us to investigate the trade-off between detection probability
of different attackers and memory allocation of DIFT. The
(K + 1)-player game is dynamic where at each stage the
attackers choose their next operation in the system and the
defender chooses the type of analysis at each flow which
characterizes the allocation of the memory.
We make the following contributions in this paper:

• We prove that finding an optimal defense strategy
against given attackers’ strategies is equivalent to max-
imizing an increasing DR-submodular function subject
to a polytope constraint. Using the equivalence, we pro-
vide an algorithm to compute an approximate optimal
strategy of the defender.

• We show that finding an optimal attacker’s strategy, for
given strategies of other attackers and the defender, is
equivalent to solving a shortest path problem on the
information flow graph of the system. Based on this
mapping we propose a polynomial-time algorithm for
computing an optimal attacker strategy.



• We evaluate the performance of our algorithm on data
sets collected using Refinable Attack INvestigation
(RAIN) system and analyze the optimal system mem-
ory allocation.

This paper is organized as follows: Section II summarizes
the related work. Section III introduces the notion of in-
formation flow graph and then discusses the attacker and
defender models. Section IV describes the formulation of
the dynamic game between DIFT and multiple adversaries.
Section V analyzes the best responses of the players of the
game. Section VI presents the numerical results. Section VII
gives the concluding remarks and future work.

II. RELATED WORK

Game theoretic framework is used to analyze security and
privacy in computer and communication networks in [3]. A
zero-sum game is presented in [4] to model the interaction
between malicious attackers and the Intrusion Detection
System (IDS) who allocates system resources for detection.
A nonzero-sum game model is given in [5] to analyze joint
threats from APT attacker and the insiders and the best
response of the players are derived. In contrast to references
[3]-[5], our model focuses on a case where multiple attackers,
such as APTs and cyber criminals, interplay with a resource
constrained defense mechanism in a system environment
rather than a network domain.

Multiple actors competing against a common resource in
the system domain is modeled as a FlipIt game in [6], [7].
In our case the multiple adversaries have different targets to
achieve in the system and they strategize against a common
defender. The CPU allocation problem between an APT
attacker and the system is modeled as a colonel-blotto game
in [8]. An extensive game model to detect APTs in a system
is given in [9]. Our focus is to develop a game model
that evaluates the feasibility of a resource constrained DIFT,
a widely used information flow tracking-based real-world
dynamic defense strategy, against multiple attackers that
include APTs and cyber criminals.

Defending against APTs using a DIFT-based defense is
studied in [10], [11]. A stochastic variant of the problem
is later considered in [12]. In contrast to references [10]-
[12], this paper consider the case of simultaneous detection
of multiple adversaries by a resource constrained defender.
In our analysis, we use the notion of DR-submodularity.
Submodular functions are a wide class of non-convex/non-
concave continuous functions with constant approximation
guarantees [13]. They find applications in combinatorial
optimization [14] and machine learning [15]. To the best of
our knowledge, this is the first time DR-submodularity is
used in the context of a security problem.

III. PRELIMINARIES

A. Information Flow Graph (IFG)
An IFG [1], G = (VG ,EG), is a graphical representation of

log data collected from a system, where VG = {v1, . . . ,vN}
and EG ⇢ VG ⇥VG . Here, G represents the whole-system
execution during the entire period of logging and N denotes
the total number of nodes in the IFG. The nodes of the

IFG represent processes (e.g., an instance of a computer
program), file objects, network sockets and memory objects.
The edges represent the feasibility of pushing information
flows from one process to another process. We use IFGs in
our formulation to detect adversaries in a system.

B. Attacker Model
We consider an attack model that consists of K adversaries,

denoted PA1 , . . . ,PAK , of varying attack capabilities. Highly
capable adversaries, such as nation-states, are capable of
developing APTs with sophisticated targets and attack goals.
Additionally, less capable adversaries, such as small cyber
criminal gangs may also attack the system, for purposes
such as creating a botnet. Without loss of generality, assume
that {PAk}K

k=1 is an ordered list in the increasing order of
the attacking capabilities of the adversaries. We capture the
different capabilities of the attackers in the payoff functions
of the players (see Section IV).

Adversaries enter into the system through a subset of nodes
l ⇢VG in the IFG G =(VG ,EG). Each adversary has a distinct
goal to achieve in the system. The goals of adversaries are
identified in the IFG as a set of destination nodes denoted by
D := {d1, . . . ,dK}⇢VG , where each dk is the specific target
of the kth adversary PAk . For all k2 {1, . . . ,K}, adversary PAk
performs operations in the system, i.e., transition between
nodes in the IFG, so as to reach its goal dk. Furthermore,
all the adversaries are capable of abandoning their respective
attacks before reaching their corresponding destination nodes
to avoid getting detected by the defender.

C. Defender Model: DIFT
We consider a DIFT-based defense mechanism [2]. DIFT

consists of three main components: (i) tainting at tag sources,
(ii) tag propagation policies, and (iii) trapping at tag sinks.
Firstly, DIFT taints all the information flows incoming to
the set of nodes l ⇢ VG in the IFG, where l denotes the
set of vulnerable locations in the system which an adversary
can exploit to enter into the system. Then, DIFT tracks the
propagation of the tainted flows through the system during
various system operation. Finally, DIFT performs security
analysis called ‘trapping’ in order to verify the authenticity
of the tagged information flows when an unauthorized usage
of a tainted flow is detected. While DIFT is widely used for
detection of cyber attackers (see [2], [1] and the references
therein), its excessive memory and runtime overhead makes
it difficult to integrate into ordinary systems. In this paper,
we consider a memory constrained DIFT to defend against
multiple adversaries.

We consider a defender who observes W number of tagged
flows at each time instance, where W > K, and aims to
simultaneously detect the K adversaries before they achieve
their respective goals. Out of the W tagged flows, K tagged
flows correspond to K adversarial flows which are indistin-
guishable to the defender from the (W �K) tagged benign
flows. DIFT can detect an adversarial flow of kth adversary
by performing type-k security analysis on the tagged flows,
where k = 1, . . . ,K. The amount of resources such as memory
and processing power required to do type-k trapping varies



with the capabilities of the kth adversary and also depends on
the trapping location of the tagged flow in the IFG. Moreover,
the amount of resources (memory) that can be allocated for
trapping at each time instance is constrained because of the
limited memory. Hence, DIFT can incur additional resource
cost by undertaking any type-k trapping on tagged benign
flows (cost of false positives).

Let M denote the total amount of memory available to the
DIFT at each time instant when it observes W tagged flows at
different processes and files in the system. In our model con-
sisting of multiple attackers, the resource constrained DIFT
at each time step needs to allocate its available memory, M,
among different security analyses across W tagged flows to
maximize the probability of detection and minimize the harm
caused by the attackers to the system.

IV. GAME FORMULATION

In this section, we model the (K+1)-multi-player dynamic
game, G, between the defender player PD and the adversarial
players PA1 , . . . ,PAK . All players act simultaneously at each
stage of the game and no player can observe the action of any
other player. As a result, the game is an imperfect information
game. We assume that all players are rational and know the
payoff function and the goal of every other player. Hence the
game is a complete information game. The game evolves in
the time t = 0,1,2, . . . ,T , where t = T denotes the termination
time of the game and t is referred to as the stage of the game.
State Space: Let S denote the state space of the game.
Then each state s 2 S is structured as s = (s1, . . . ,sW ). The
entries s1, . . . ,sW represent the current status of the W tagged
information flows in the system as observed by the defender
at time t. We let the first K entries in any state s, i.e.,
s1, . . . ,sK , represent the status of the K adversarial flows in
the IFG. The defender observes all the entries in s but is
unaware of whether each tagged flow observed at s1, . . . ,sW
is benign or adversarial. Each type-k adversary only observes
the sth

k entry of a state s. Notice that the players of the
game have asymmetric information on the states of the
game. Furthermore, we introduce a new state, s0, where
s1 = . . . = sW = s0, to denote the initial state of the game
at time t = 0. We augment s0 into the underlying IFG of the
game as a virtual node. The set of outgoing edges from the
virtual node, s0, to each node in the set l ⇢VG (entry points
of the K adversaries) models the initial foothold of the K
adversaries in the system.

For a state s = (s1, . . . ,sW ), si = v j indicates the arrival of
ith information flow to node v j 2 VG in the IFG. Here, i =
1, . . . ,W and j = 1, . . . ,N. We let si = f , for any i = 1, . . . ,W ,
represent the case where ith information flow observed by
the DIFT is no longer being continued in the system (i.e.,
dropped out). Also, sk = t , for any k= 1, . . . ,K, represents the
case where DIFT has successfully trapped the kth adversarial
flow before it reaches its destination node dk. Moreover, if
any si = f (or sk = t) for a state s at time t, then that entry
si (sk, respectively) will remain at f (t , respectively) for any
future state s

0 at time t 0 > t. Hence, sk 2 VG [{f ,t} for all
k = 1, . . .K and si 2 VG [ {f} for all i = K + 1, . . .W . The
total number of states in the game is O((N+2)KNW�K)+1.

A state s= (s1, . . . ,sW ) is a terminal state if sk 2 {dk,f ,t},
for all k 2 {1, . . . ,K}. Let the set ST ⇢ S denote the set of
terminal states in G. This implies that at a state s 2 ST , each
of the k adversaries either reached its respective destination
dk in the system or abandoned the attack or is detected by
the defender before reaching its goal.
Action Space: The action sets of players are finite. At every
state in the game except the terminal states s2 ST , adversarial
players PA1 , . . . ,PAK decide which out-neighboring node of
the IFG to transition to or drop the attack. The defender
player decides whether to trap or not to trap each tagged
information flow, s1, . . . ,sW , observed at time t. Moreover,
if defender decides to trap a tagged information flow then it
must also decide which security policy it should choose to
analyze the trapped flow. Let AA1 , . . . ,AAK and AD denote
the action sets of PA1 , . . . ,PAK and PD, respectively. Then,
at a state s = (s1, . . . ,sW ), sk /2 {dk,f ,t}, AAk(sk) = {vi :
(v j,vi) 2 EG and sk = v j}[?. Here, the action vi indicates
kth adversary transitioning to a neighboring node in the IFG
while ? represents kth adversary dropping out of the game.

Let P = {p1, . . . ,pK} denote the set of all K security
analysis and pk 2 P be the type-k security analysis, where
k = 1, . . . ,K. Then define P(s)✓P to be the set of security
analysis feasible in the state s, i.e., pk 2 P(s) if sk 6= {t}
in s. This implies that after successfully detecting a type-k
adversarial flow, DIFT can stop analyzing rest of its tagged
flows using type-k analysis as the kth attacker is already
detected by the defender. Then AD(s) =AD(s1)⇥AD(s2)⇥
. . .⇥AD(sW ), where AD(si) = P(s)[ {0} for i = 1, . . . ,W
gives the set of feasible actions for the defender at the
current location of the tagged flow, si. The action 0 represents
the defender not trapping a tagged flow observed at si.
At states s 2 ST , AA1(s) = . . .AAK (s) = AD(s) = /0. In our
formulation, the defender is unaware whether an incoming
flow is malicious or not and the adversaries do not know
whether the adversarial flows are going to get trapped at the
nodes they reach at time t. The game captures the information
asymmetry between the players as all players take actions
simultaneously and no player observe others’ actions.
Player Strategies: If we allow all players to use information
obtained from previous game stages (i.e., the previous state
transitions, previous trapping strategies) to determine their
action at each stage, the size of the set of possible strategies
for the defender and the adversaries can be very large. To
reduce the computational complexity and to model the fact
that trapping an adversarial information flow is a lower-level
processes with limited computation capability, we restrict our
focus to stationary strategies.

Definition IV.1. A player strategy is said to be stationary
if it depends only on the current state of the player in the
game.

We consider mixed strategies in which players ran-
domize over their action spaces. Let PA1 , . . . ,PAk and PD

denote the set of (mixed) stationary strategies of the
players. Strategy of the kth adversary at a state s 2 S

is pAk(s) 2 PAk : sk ! [0,1]|AAk (sk)|. The defender’s strat-
egy at a state s is pD(s) 2 PD : s ! [0,1]W |ADk (s)|. Fur-



thermore, pD(s) =
⇥
ps

D(s1) . . . ps
D(sW )

⇤
, where ps

D(si) =⇥
ps

D(si,1) . . . ps
D(si,K)

⇤
for all i = 1, . . . ,W . ps

D(si,k) de-
notes the probability of using type-k trapping for a tagged
information flow observed at a location corresponding to
si in the state s. Here, si is the location of the ith tagged
information flow observed according to the state s.
Payoffs: Payoff of an adversarial player consists of three
components. An adversarial player PAk gets (i) a reward
of b A

k > 0 for reaching its destination dk without being
detected by the defender, (ii) a penalty of aA

k 6 0 for getting
detected by the defender, and (iii) a penalty of sA

k 6 0 for
abandoning the attack by dropping out, for k 2 {1, . . . ,K}.
Recall that the adversaries are ordered based on their attack
capability as {PA1 , . . . ,PAK}. Thus, b A

1 6 . . .6 b A
K , aA

1 > . . .>
aA

K , and s A
1 > . . . > s A

K . On the other hand, the defender
payoff consists of four components. The defender player
PD gets (i) a penalty of b D

k 6 0 for kth adversary reaching
its destination dk without being detected by the defender,
(ii) a reward of aD

k > 0 for detecting the kth adversary,
(iii) a reward of s D

k > 0 if the kth adversary abandon the
attack by dropping out, and (iv) a resource constraint M.
Then, b D

1 > . . . > b D
K , aD

1 6 . . . 6 aD
K , and sA

1 6 . . . 6 sA
K .

At every state of the game the resource (memory) constraint
should be satisfied. Moreover, the memory requirement to
perform security analysis for different types of adversaries
are different. The amount of memory required to perform
security analysis related to highly capable adversaries is
higher than the memory required to deploy security analysis
to detect less capable adversaries. Also, the memory required
to perform security analysis depends on the node in the IFG
as the required memory can vary depending on the type of
the process (e.g. process, file or network socket) and the
busyness of the process. Let Ck(vi) denote the amount of
memory required to perform type-k trapping analysis at node
vi 2 VG . Then, under a policy pD 2 PD at every state s 2 S,
ÂW

i=1 ÂK
k=1 ps

D(si,k)Ck(si)6 M.
Let p̄T (k), p̄R(k), and p̄f (k) denote the probability that

adversary PAk is detected by the defender PD, the probability
that adversary PAk reach destination dk, and the probability
that adversary PAk drops out of the game, respectively.
Here, p̄T (k), p̄R(k), and p̄f (k) are functions of strategies
pA1 , . . . , pAK , pD. Now we define the payoff functions of the
players of G. Let UA1 , . . . ,UAK ,UD denote the payoff func-
tions of the K adversarial players and the defender player,
respectively. For a given strategy, pD and pA = {pAk}K

k=1 =
{pA1 , . . . , pAK}, the payoffs {UAk}K

k=1, and UD are

UD(pA, pD)= Â
k2{1,...,K}

⇣
p̄T (k)aD

k + p̄R(k)b D
k + p̄f (k)s D

k

⌘
,(1)

UAk(pA, pD)= p̄T (k)aA
k + p̄R(k)b A

k + p̄f (k)s A
k . (2)

Additionally, the defender policy pD must satisfy the
following memory constraint

W

Â
i=1

K

Â
k=1

ps

D(si,k)Ck(si)6 M, for all s 2 S. (3)

In this paper, our goal is to find best responses of the
players which is defined below.

Definition IV.2. Let pD : S ! [0,1]|S| denote a defender
strategy and pA : S! [0,1]|S| denote an adversary strategy.
The set of best responses of the defender is given by

BR(pA) = argmax
pD

{UD(pD, pA) : pD 2 [0,1]|AD|}.

Similarly, the best responses of the adversary given by

BR(pD) = argmax
pA

{UA(pD, pA) : pA 2 [0,1]|AA|}.

In what follows, we focus on finding best responses of the
players of the game.

V. BEST RESPONSES OF THE PLAYERS

A. Best Response of the Defender

For a given strategies pA1 , . . . , pAK of K adversarial play-
ers, the best response of defender is characterized by the
following optimization problem.

Problem V.1. The defender’s problem is as follows:
max

pD2PD
Âk2{1,...,K}

⇣
p̄T (k)aD

k + p̄R(k)b D
k + p̄f (k)s D

k

⌘

Subject to: ÂW
i=1 ÂK

k=1 ps
D(si,k)Ck(si)6 M, for all s 2 S.

There exists a reduction of a general instance of a multi-set
cover problem to an instance of Problem V.1 which provides
the following hardness result.

Proposition V.2. The defender’s best response problem,
Problem V.1, is NP-hard.

We omit the proof of Proposition V.2 in the interest of
space. Also note that Problem V.1 is a non-convex opti-
mization problem. To this end, we investigate on additional
structure of the payoff function of the defender to obtain a
tractable solution to Problem V.1.

Definition V.3 ([16]). A function f (·) defined over X 2¬n

satisfies the diminishing returns (DR) property if for all a 6
b 2 X , for all i 2 n, for all k 2 ¬+ such that (kXi + a)
and (kXi + b) are still in X , it holds, f (kXi + a)� f (a) >
f (kXi +b)� f (b). f (·) is called a DR-submodular function.

For a twice differentiable function Definition V.3 is equiv-
alent to —2

i j f (x) 6 0, for all i 6= j [13]. We introduce
the following concepts which is used in Theorem V.4 to
prove that Problem V.1 is equivalent to maximizing a DR-
submodular function.

Notice that a strategy pAk 2PAk of the kth adversary induces
a set of sample paths in the underlying state space. All the
sample paths resulting from a given pAk can be divided into
one of the following two categories: i) a sample path, wk,
starts from the node s0 and ends at the node dk in G. Let Wdk

k
denote the set of such paths and ii) a sample path, wk, starts
from the node s0 and ends at a node v j 2VG \{dk}, where
pAk(v j,?) = 1 and j 2 {1, . . . ,N}. That is, PAK abandons its
attack at a node v j in G before reaching its destination dk.
Let Wf

k denote the set of such paths.

Theorem V.4. The defender’s payoff function, UD(pA, pD), is
DR-submodular in the defender’s strategy, pD.



Proof. For a given pA 2 PA, let pR(wk), pT (wk), and pf (wk)
be the probability of PAK reaching dk without getting de-
tected, the probability of getting detected, and the probability
of getting trapped when kth adversary is following the sample
path wk, respectively. Define p(wk) to be the probability of
PAK choosing sample path wk in G. Now, UD(pA, pD) can be
rewritten as follows.

UD(pA, pD)= Â
k2{1,...,K}

⇣
Â

wk2Wdk
k

p(wk)
⇣

pT (wk)aD
k + pR(wk)b D

k +

pf (wk)s D
k

⌘
+ Â
wk2Wf

k

p(wk)
⇣

pT (wk)aD
k + pf (wk)s D

k

⌘⌘

= Â
k2{1,...,K}

⇣
Â

wk2Wdk
k

p(wk)
⇣

aD
k +[b D

k �aD
k ]pR(wk)+

[s D
k �aD

k ]pf (wk)
⌘
+ Â
wk2Wf

k

p(wk)
⇣

aD
k +[s D

k �aD
k ]pf (wk)

⌘⌘
(4)

Eq. (4) holds as pT (wk) = 1� pR(wk)� pf (wk). Notice
that pR(wk) = ’

si2wk
[1� ps

D(si,k)] and pf (wk) = Â
si0 2wk

’
si2ŵk

[1�

ps
D(si,k)]pAk(si0 ,?), where ŵk is the subpath in wk from the

node s0 to the node si0 in G.
Let —2

i UD(pD) denote the ith entry of the gradient of UD

and —2
i jUD(pD) denote the (i, j)th entry of Hessian of UD(pD),

where i and j are indices of the vector pD. Then,

—iUD(pD) = Â
k2{1,...,K}

⇣
Â

wk2Wdk
k

p(wk)
⇣
[b D

k �aD
k ]—i pR(wk)

+[s D
k �aD

k ]—i pf (wk)
⌘
+ Â

wk2Wf
k

p(wk)
⇣
[s D

k �aD
k ]—i pf (wk)

⌘⌘

—2
i jUD(pD) = Â

k2{1,...,K}

⇣
Â

wk2Wdk
k

p(wk)
⇣
[b D

k �aD
k ]—2

i j pR(wk)

+[s D
k �aD

k ]—2
i j pf (wk)

⌘
+Â
wk2Wf

k

p(wk)
⇣
[s D

k �aD
k ]—i j pf (wk)

⌘⌘

Here, —i pR(wk) =� ’
sl2wk
sl 6=si

[1� ps
D(sl ,k)] and for any i 6= j,

—2
i j pR(wk) = ’

sl2wk
sl /2{si,s j}

[1� ps
D(sl ,k)]. Also, for any i 6= j,

—i pf (wk) =� Â
sl0 2wk
sl0>si

’
sl2ŵk
sl 6=si

[1� ps
D(sl ,k)]pAk(sl0 ,?) and

—2
i j pf (wk) = Â

sl0 2wk
sl0>{si,s j}

’
sl2ŵk

sl /2{si,s j}

[1� ps

D(sl ,k)]pAk(sl0 ,?).

The notation sl0 > si (and sl0 > {si,s j}, resp.) implies that the
node sl0 in the sample path wk appears as or after the node
si (sr, where the index r = i if the node si appears after the
node s j in the sample path wk and vice versa, resp.).

Note that —2
i j pR(wk) > 0 and —2

i j pf (wk) > 0. Then from
Eq. (5), —2

i jUD(pD) 6 0 for any i 6= j as [b D
k �aD

k ] 6 0 and
[s D

k �aD
k ] 0. Thus, UD(pD) is DR-submodular in pD.

In order to propose an approximation algorithm that

leverages the DR-submodularity of UD, we first show some
additional properties of UD. Specifically, in Lemma V.5 we
show that UD is point-wise monotone increasing in pD and
in Theorem V.6 we show a Lipschitz condition.

Lemma V.5. The defender’s payoff function, UD(pA, pD), is
monotone increasing in the defender’s strategy, pD.

Proof. Consider the defender’s payoff function given
by Eq. (4). Notice that when pD is increasing both
pR(wk) = ’

si2wk
[1� ps

D(si,k)] and pf (wk) = Â
si0 2wk

’
si2ŵk

[1�

ps
D(si,k)]pAk(si0 ,?) terms decreases. Also [b D

k �aD
k ]< 0 and

[s D
k � aD

k ] < 0. Then for any pD, p̂D 2 PD with pD < p̂D,
UD(pA, pD)<UD(pA, p̂D).

A univariate auxiliary function gpD,p̂D(z ) is introduced
below to prove the required Lipschitz condition.

Theorem V.6. The univariate axillary function gpD,p̂D(z ) =
UD(pA, pD +z p̂D) with respect to z has L-Lipschitz continu-
ous derivative in [0,1], where z 2 R+ and pD, p̂D 2 PD.

Proof. Second derivative of gpD,p̂D(z ) with respect to z can
be written as follows:

—2
z gpD,p̂D(z )= Â

k2{1,...,K}

⇣
Â

wk2Wdk
k

p(wk)
⇣
[b D

k �aD
k ]—2

z pR(z ,wk)+

[s D
k �aD

k ]—2
z pf (z ,wk)

⌘
+Â
wk2Wf

k

p(wk)[s D
k �aD

k ]—2
z pf (z ,wk)

⌘
,

where pR(z ,wk) = ’
si2wk

[1 � ps
D(si,k) � z p̂s

D(si,k)] and

pf (z ,wk) = Â
si0 2wk

’
si2ŵk

[1 � ps
D(si,k) � z p̂s

D(si,k)]pAk(si0 ,?).

Notice that both pR(z ,wk) and pf (z ,wk) are polynomials
of z . Hence they can be expressed as pR(z ,wk) = a0z n +
a1z n�1 + . . .+an�1z +1 and pf (z ,wk) = b0z m +b1z m�1 +
. . .+bm�1z +1. Furthermore, 0 ai,b j  1 for i2 {0, . . . ,n�
1} and j 2 {0, . . . ,m� 1}, where n represent the number
of distinct nodes (excluding the node corresponding to dk)
traversed in the sample paths related to wk 2 Wdk

k and m is
the number of distinct nodes traversed in wk 2Wf

k .
From the polynomial forms of pR(z ,wk) and pf (z ,wk),

we can write their second derivatives with respect to z
as —2

z pR(z ,wk) = a0n(n� 1)z n�2 + a1(n� 1)(n� 2)z n�3 +

. . .+6an�3z +2an�2 and —2
z pf (z ,wk) = b0m(m�1)z m�2 +

b1(m� 1)(m� 2)z m�3 + . . .+ 6bm�3z + 2bm�2. The terms
ai for i 2 {0, . . . ,n� 2} and b j for j 2 {0, . . . ,m� 2} are
products of probability terms. Hence, ai and b j are upper
bounded by 1. max(n) = N�1 when the sample path from
s0 to dk has to traverse through all the N distinct nodes in the
G without getting trapped for a corresponding kth analysis at
N�1 nodes (note that defender is not allowed to trap at the
Nth node which is related to the dk in this case). Similarly,
max(m) = N � 1 when the kth adversary traverse through
N�1 distinct nodes in G on a path where Nth node is dk (i.e
wk 2 Wdk

k ) and abandon the attack at the node N�1 with a
non zero probability or kth adversary traverse through N�1
distinct nodes in G that does not contain the node related to
dk and abandon the attack at node N�1 with probability one



(i.e. wk 2Wf
k ).

For z 2 [0,1], we can bound the maximum value of
—2 pR(z ,wk) and —2 pf (z ,wk) by (N�2)(N�1)N/3, where
N � 3. Let w 0k be a path in Wdk

k that yield the highest
probability p(w 0k) and similarly let w 00k be a path in Wf

k
that is gives the highest probability p(w 00k). Let the total
number of paths in the set Wdk

k and Wf
k denoted by |Wdk

k |
and |Wf

k |, respectively. Define L̂k = max{|p(w 0k)|Wdk
k |[b D

k �
aD

k ]|, |p(w 00k)|W
dk
k |[s D

k � aD
k ]|, |p(w 00k)|W

f
k |[s

D
k � aD

k ]|} and
L̂=max

k
{L̂k} for k = 1, . . . ,K. Hence we obtain the following

upper bound on the |—2
z gpD,p̂D(z )|:

|—2
z gpD,p̂D(z )| L̂k

(N�2)(N�1)N
3

 L̂
(N�2)(N�1)N

3
Since the second derivative of gpD,p̂D(z ) with respect to
z is bounded in the case where z 2 [0,1], first derivative
of gpD,p̂D(z ) with respect to z has L-Lipschitz continuous
derivative in [0,1]. Furthermore, L = L̂ (N�2)(N�1)N

3 .

The Lipschitz constant L derived in Theorem V.6 is used
later in Algorithm V.1 and in Proposition V.9 to claim an
approximation guarantee on Problem V.1.

Definition V.7. A set P is said to be a down-closed convex
set if x 2 P and 0 6 y 6 x implies y 2 P .

Lemma V.8. Let PD be the strategy space of the defender
and P ⇢ PD be the feasible strategy space of the defender.
That is, P := {pD 2 PD : ÂW

i=1 ÂK
k=1 ps

D(si,k)Ck(si) 6 M, for
all s 2 S}. Then, P is a down-closed convex polytope in the
positive orthant.

Proof. The strategy space of the defender is a positive
orthant as probabilities are bounded between 0 and 1. Thus
P ✓ [0,1]|pD| satisfies P := {pD 2 PD|0 6 [0,1]|pD|,ApD 6
M }, where is a vector of all ones of size |S|. Here, |S|
is the number of states in S, |pD| is the size of pD, M is
the available memory, and A is the (|S|⇥ |S|) matrix that
captures the memory constraint. Note that the feasible space
is a subset of the polytope [0,1]|pD| that is constrained by
ApD 6 M . For any p̂D satisfying 0 6 p̂D 6 pD, Ap̂D 6 M .
This implies that P is a down-closed convex polytope in the
positive orthant.

In what follows, we present an algorithm to compute an
approximate optimal strategy of the defender.

Proposition V.9. Let U?
D(pA) be the maximum defender’s

payoff for given attackers’ strategies pA = {pAk}K
k=1. Then,

Algorithm V.1 which takes as input pA returns an approximate
optimal defense strategy p̄D for the defender such that
UD(pA, p̄D) 6 (1� 1/e + e)U?

D(pA). Further, Algorithm V.1
takes O(1/e) number of iterations and the number of op-
erations in each iteration is linear in the action space of the
defender.

Proof. Theorem V.4 and Lemma V.5 show that the defender’s
payoff function, UD, is DR-submodular and monotonically
increasing in pD, respectively. Thus Problem V.1 is equivalent
to maximizing an increasing DR-submodular function. Using

Algorithm V.1 Best response computation of the defender

Input: Attacker’s strategies PA, P , stepsize g 2 (0,1]
Output: Best response of the defender p̄D

1: Initialize p0
D 0, t 0,r 0

2: while t < 1 do

3: Find p̂r
D : hp̂r

D,—UD(pr
D)i> h max p̂D2P h p̂D,—UD(pr

D)i
�1

2
dL, where L > 0 is the Lipschitz constant from

Theorem V.6, h 2 (0,1] is the multiplicative error level,
d 2 [0, d̄ ] is the additive error level

4: Find stepsize gr 2 (0,1], e.g., gr  g; and set gr  
min{gr,1� t}

5: pr+1
D  pr

D + gr p̂r
D, t t + gr, r r+1

6: end while

7: return p̄D pr
D

the Lipschitz constant of the gradient of UD derived in Theo-
rem V.6, the proof follows from Theorem 1 and Corollary 1
in [16].

B. Best Responses of the Adversaries
The best response of the kth adversarial player PAk

to a given defender strategy, pD, and other K � 1
adversarial players’ strategies, pA\k := {pAk}k=K

k=1 \ pAk =
pA1 , . . . , pAk�1 , pAk+1 , . . . , pAK , is given by the following op-
timization problem.

Problem V.10. The adversary’s problem is as follows: for
any k 2 {1, . . . ,K}

max
pAk2PAk

⇣
p̄T (k)aA

k + p̄R(k)b A
k + p̄f (k)s A

k

⌘

In this section we derive a pure strategy best response for
the kth adversary, where k 2 {1, . . . ,K}.

Definition V.11 (Pure strategies of PAk ). The kth adversary’s
strategy can be interpreted as selecting a sample path, wk,
in G from node s0 to dk. Then for a given pair of nodes vi
and v j in G, where i, j 2 {1, . . . ,N}, a pure strategy of PAk
can be defined as follows:

pAk(vi,v j) =

(
1, if (vi,v j) 2 wk

0, otherwise.

The following lemma characterizes the best response of
PAk under pure strategies.

Lemma V.12. Let Wdk
k denote the set of paths that start from

the node s0 and end at the node dk in G. Then for any wk 2
Wdk

k , define pR(wk) to be the probability of PAk reaching
dk without being detected by PD when PAk is following the
path wk. Furthermore, let w⇤ = argmax{pR(wk) : wk 2Wdk

k }.
Then, w⇤ 2 BR(pD, pA\k).

Proof. Note that pAk(vi,f) = 0, for all i 2 {1, . . . ,N}, when
PAk follows a pure strategy. Let p(wk) be the probability of
PAK choosing a path wk 2Wdk

k . Then the payoff of PAk under
a pure strategy is as follows:

UAk(pA, pD) = p̄T (k)aA
k + p̄R(k)b A

k



= Â
wk2Wdk

k

p(wk)
⇣
[1� pR(wk)]aA

k + pR(wk)b A
k

⌘

= Â
wk2Wdk

k

p(wk)
⇣

aA
k +[b A

k �aA
k ]pR(wk)

⌘

For a given pD and pA\k, any path wk 2 Wdk
k that maximize

UAk(pA, pD) will yield the same payoff to PAk . Hence we can
rewrite the best response of PAk (under pure strategies) as

BR(pD, pA\k) 2 arg max
wk2Wdk

k

⇣
aA

k +[b A
k �aA

k ]pR(wk)
⌘
.

Since aA
k is a constant value and the term [b A

k �aA
k ] is a

positive scalar, BR(pD, pA\k) 2 argmax{pR(wk) : wk 2Wdk
k }.

Next we define the set of states reachable to a state s 2 S

in the following definition.

Definition V.13. A state s2 S is said to be one-step reachable
from a state s̄ 2 S if each of the position s j in the state s

is one-step reachable from each of the position s̄ j in s̄, for
all j 2 {1, . . . ,W}. Here, we say a position s j is one-step
reachable from a position s̄ j, if s j 2 {f ,t} or if (vi,vr) 2 EG
where s̄ j = vi and s j = vr. Then, S̄(s)✓ S is the set of states
from which state s is one-step reachable.

Let pB be the distribution of the benign information
flows in the system. More precisely, it provides transition
probabilities of a benign flow between two nodes vi,v j 2VG .
In the following, we define the probability of type-k trapping
at node vi in G, pD(vi,k), for a given pD, pA\k, and pB.

Definition V.14. Without loss of generality, assume each kth

position in the state s 2 S related to the PAk . Let Ŝ(vi) ✓ S

be the set of states such that for all ŝ 2 Ŝ(vi), sk = vi for
i2 {1, . . . ,N}. Then the probability of type-k trapping at node
vi in G, pD(vi,k), can be defined as follows:

pD(vi,k) = Â
ŝ2Ŝ(vi)

⇣
Â

s̄2S̄(ŝ)
’
k0

pAk0 (s̄k0 , ŝk0)’
k00

pB(s̄k00 , ŝk00)
⌘

pŝ

D(ŝk,k),

where k0 2 {1, . . . ,K}\ k, k00 2 {K +1, . . . ,W},

pAk0 (s̄k0 , ŝk0) =

8
><

>:

1, if s̄k0 = ŝk0 and s̄k0 2 {f ,t,dk0}
ps̄

D(s̄k0 ,k0), if s̄k0 2VG and ŝk0 = t
pAk0 (s̄k0 , ŝk0)[1� ps̄

D(s̄k0 ,k0)], otherwise

and

pB(s̄k00 , ŝk00) =

(
1, if s̄k00 = ŝk00 and s̄k00 2 {f ,dk̄}
pB(s̄k00 , ŝk00), otherwise

for all k̄ 2 {1, . . . ,K}.

The following theorem presents a method to calculate a
best response of PAk for a given pD, pA\k, and pB.

Theorem V.15. The best response of adversary PAk ,
BR(pD, pA\k), under pure strategies, is a path w⇤ returned by
a shortest path algorithm on the IFG, G, with edge weight
of each incoming edge to a node vi given by � log([1�

pD(vi,k)]), for i 2 {1, . . . ,N}.

Proof. Notice that using pD(vi,k) we can write pR(wk) =
’

vi2wk
[1� pD(vi,k)]. From Lemma V.12, we can derive the

following expression1 for the payoff of PAk under best
response strategy,

max ’
vi2wk

[1� pD(vi,k)] = max ’
vi2wk

log([1� pD(vi,k)])

= min ’
vi2wk

� log([1� pD(vi,k)])

This implies that solving Problem V.10 is equivalent to
solving a shortest path algorithm on G, with � log([1�
pD(vi,k)]) as the edge weight of each incoming edge to
node vi. Notice that edge weights are positive values since
0 < [1� pD(vi,k)] 6 1 Furthermore, Definition V.14 can be
used to calculate pD(vi,k) for given pD, pA\k and pB. Hence
a Dijkstra’s shortest path algorithm [17] will compute an
optimal attacker strategy.

VI. NUMERICAL STUDY

We validate our theoretical results using real-world attack
data obtained using RAIN [1] for a three day nation state
attack. We implement our model and run Algorithm V.1 on
day one attack data of the nation state. A brief description of
the dataset we used and the steps involved in the construction
of the IFG for that attack are given below.

The goal of the adversaries’ campaign was to steal sensi-
tive proprietary and personal information from the targeted
company. We considered two attackers operating in the
system with distinct goals and entry points. Both attackers
established their initial foothold in the system through net-
work (e.g., spear-phishing attack, watering hole attack). Once
the system is compromised, attacker 1 leveraged common
system utilities to perform internal reconnaissance. The goal
of this attacker was to fingerprint the compromised system
to detect running processes and network information. On the
other hand, attacker 2 wrote a malicious program to a disk
that was eventually executed to establish a backdoor which is
used to continuously exfiltrate the company’s sensitive data.

Initial conversion of the attack data into an IFG resulted in
a coarse-grain graph with ⇡ 132,000 nodes and ⇡ 2 million
edges. We pruned the coarse-grained graph by starting from
the destinations of each attacker. Then we constructed the
subgraph related to all the nodes in the coarse-grained graph
that have at least one directed path to the destination of that
attacker. We performed our analysis on the resulting refined
IFG consisting of 30 nodes related to the attacks.

The parameters chosen are: aD
1 = 100, aD

2 = 200, b D
1 =

�100, and b D
1 = �200. Thus attacker 2 is more capable as

the impact of attack 2 is more compared to attack 1, which
is captured by aD

2 > aD
1 . Figure 1(a) shows the variation of

the payoff of the defender returned by Algorithm V.1 with
respect to iteration count for four instances with different
values of M. In order to analyze the impact of the defender

1The expression gives a scaled version of the exact payoff. In order to
calculate the exact payoff under best responses of PAk , one need to multiply
the value of this expression by [b A

k �aA
k ] and add a constant value aA

k .
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Fig. 1: The parameters chosen are: aD
1 = 100, aD

2 = 200, b D
1 =�100, and b D

1 =�200. The memory values, Ck, for the nodes in the IFG
where chosen from a random distribution such that C1(vi) < C2(vi), for all i 2 {1, . . . ,N}. Figure 1(a) shows the payoff of the defender
obtained by Algorithm V.1 v.s. iteration count for four instances with different values of M. Figures 1(b) and 1(c) show the probability
of attacker one and two, respectively, reaching the target with increasing values of M.

on the different attackers, we compute attack success proba-
bilities of each attacker with varying the amount of memory.
Figures 1(b) and 1(c) show the probabilities of attacker one
and two, respectively, reaching their targets while increasing
the value of M. Notice from Figures 1(b) and 1(c) that for a
fixed memory constraint, attacker 2 has higher probability of
reaching the target compared to attacker 1 which is expected
as attacker 2 is more capable.

VII. CONCLUSION

In this paper, we studied the problem of detecting multiple
attackers in a computer system. We presented an analytical
model of a resource constrained DIFT that allocate scarce
resources across multiple flows to simultaneously detect
different attackers. We modeled the strategic interaction be-
tween K adversarial information flows and the DIFT defense
as a dynamic (K +1)-player game. Each stage of the game
corresponds to the propagation of the attacks through the
system, in which each attacker must determine the next
operation and the defender must decide an efficient memory
allocation. Given attackers’ strategies, we proved that finding
an optimal defense strategy is equivalent to maximizing
an increasing DR-submodular function which enabled us to
propose an approximation algorithm. Further, given a defense
strategy and strategies of (K � 1) attackers, we showed
that finding an optimal attacker strategy is equivalent to
solving a shortest path problem, where the edge weights
are derived from the strategies of the other players. Based
on this mapping we proposed a polynomial-time algorithm
for computing an optimal attacker strategy. We evaluated
the performance of our algorithm on a real-world attack
dataset obtained using RAIN [1]. In future, we plan to study
the solution of the dynamic game by leveraging the best
responses of the players to characterize optimal strategies
of the players.
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